A wildfire vulnerability index for buildings


  • San-Miguel-Ayanz, J. & Camia, A. EEA Technical Report N 13/2010: Mapping the Impacts of Natural Hazards and Technological Accidents in Europe: An Overview of the Last Decade (ed EEA), 47–53 (2010).

  • Unknown author. Over 100,000 hectares burnt in two weeks. Kathimerini (2021). https://www.ekathimerini.com/news/1166179/over-100-000-hectares-burnt-in-two-weeks/.

  • IFRC. Europe-Wildfires. Inf. Bull. 2 https://go-api.ifrc.org/publicfile/download?path=/docs/Appeals/21/&name=IB_Europe_Wildfires13082021.pdf (2021).

  • Turco, M., Llasat, M. C., von Hardenberg, J. & Provenzale, A. Climate change impacts on wildfires in a Mediterranean environment. Clim. Change 125, 369–380. https://doi.org/10.1007/s10584-014-1183-3 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Turco, M. et al. Decreasing fires in Mediterranean Europe. PLoS ONE 11, e0150663. https://doi.org/10.1371/journal.pone.0150663 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Turco, M. et al. On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Sci. Rep. 7, 81. https://doi.org/10.1038/s41598-017-00116-9 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Cardoso Castro Rego, F. M., Moreno Rodriguez, J. M., Vallejo Calzada, V. R. & Xanthopoulos, G. Forest Fires—Sparking Firesmart Policies in the EU (Research and Publications Office of the European Union, 2018).


    Google Scholar
     

  • Turco, M. et al. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 9, 3821. https://doi.org/10.1038/s41467-018-06358-z (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537. https://doi.org/10.1038/ncomms8537 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Komac, B. et al. Evolving Risk of Wildfires in Europe: The Changing Nature of Wildfire Risks Calls for a Policy Focus from Suppression to Prevention (UNDRR, 2020).


    Google Scholar
     

  • Molina-Terren, D. M. et al. Analysis of forest fire fatalities in Southern Europe: Spain, Portugal, Greece and Sardinia (Italy). Int. J. Wildland Fire 28, 85–98. https://doi.org/10.1071/WF18004 (2019).

    Article 

    Google Scholar
     

  • Papathoma-Köhle, M., Gems, B., Sturm, M. & Fuchs, S. Matrices, curves and indicators: A review of approaches to assess physical vulnerability to debris flows. Earth-Sci. Rev. 171, 272–288. https://doi.org/10.1016/j.earscirev.2017.06.007 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Birkmann, J. (ed.) Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies 55–77 (UNU Press, 2006).


    Google Scholar
     

  • Fuchs, S., Keiler, M., Ortlepp, R., Schinke, R. & Papathoma-Köhle, M. Recent advances in vulnerability assessment for the built environment exposed to torrential hazards: Challenges and the way forward. J. Hydol. 575, 587–595. https://doi.org/10.1016/j.jhydrol.2019.05.067 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Nardo, M., Saisana, M., Saltelli, A. & Tarantola, S. Tools for Composite Indicators Building (JRC, 2005).

    MATH 

    Google Scholar
     

  • OECD. Handbook on Constructing Composite Indicators: Methodology and User Guide (OECD Publications, 2008).

    Book 

    Google Scholar
     

  • Becker, W., Saisana, M., Paruolo, P. & Vandecasteele, I. Weights and importance in composite indicators: Closing the gap. Ecol. Ind. 80, 12–22. https://doi.org/10.1016/j.ecolind.2017.03.056 (2017).

    Article 

    Google Scholar
     

  • Papathoma-Köhle, M., Cristofari, G., Wenk, M. & Fuchs, S. The importance of indicator weights for vulnerability indices and implications for decision making in disaster management. Int. J. Disaster Risk Reduct. 36, 1–12. https://doi.org/10.1016/j.ijdrr.2019.101103 (2019).

    Article 

    Google Scholar
     

  • Beccari, B. A comparative analysis of disaster risk, vulnerability and resilience composite indicators. PLoS Curr. Disast. https://doi.org/10.1371/currents.dis.453df025e34b682e9737f95070f9b970 (2016).

    Article 

    Google Scholar
     

  • Dall’Osso, F., Gonella, M., Gabbianelli, G., Withycombe, G. & Dominey-Howes, D. A revised (PTVA) model for assessing the vulnerability of buildings to tsunami. Nat. Hazard. 9, 1557–1565. https://doi.org/10.5194/nhess-9-1557-2009 (2009).

    Article 

    Google Scholar
     

  • Balica, S. F., Douben, N. & Wright, N. G. Flood vulnerability indices at varying spatial scales. Water Sci. Technol. 60, 2571–2580. https://doi.org/10.2166/wst.2009.183 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Papathoma-Köhle, M., Schlögl, M. & Fuchs, S. Vulnerability indicators for natural hazards: An innovative selection and weighting approach. Sci. Rep. 9, 15026. https://doi.org/10.1038/s41598-019-50257-2 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Xanthopoulos, G. in II International Workshop on Forest Fires in the Wildland-Urban Interface and Rural Areas in Europe: An Integral Planning and Management Challenge, 85–92 (Athens, Greece, 2004).

  • Australian Standards. Vol. AS 3959–2009, 112 (2009).

  • Quarles, S. L., Valachovic, Y., Nakamura, G. M., Nader, G. A. & De Lasaux, M. J. Home survival in wildfire-prone areas: Building materials and design considerations. ANR. https://doi.org/10.3733/ucanr.8393 (2010).

    Article 

    Google Scholar
     

  • Maranghides, A., McNamara, D., Mell, W., Trook, J. & Toman, B. A Case Study of a Community Affected by the Witch and Guejito Fires Report: 2—Evaluating the Effects of Hazard Mitigation Actions on Structure Ignitions (National Institute of Standards and Technology, 2013).


    Google Scholar
     

  • Viegas, D. X. (ed.) Advances in Forest Fire Research 673–684 (Imprensa da Universidade de Coimbra, 2014).


    Google Scholar
     

  • Alexandre, P. M. et al. The relative impacts of vegetation, topography and spatial arrangement on buildings to wildfires in case studies of California and Colorado. Landsc. Ecol. 31, 415–430. https://doi.org/10.1007/s10980-015-0257-6 (2016).

    Article 

    Google Scholar
     

  • Alexandre, P. M. et al. Factors related to building loss due to wildfires in the conterminous United States. Ecol. Appl. 26, 2323–2338. https://doi.org/10.1002/eap.1376 (2016).

    Article 

    Google Scholar
     

  • Galiana-Martín, L. Spatial planning experiences for vulnerability reduction in the wildland-urban interface in mediterranean European countries. Eur. Countryside 9, 577–593. https://doi.org/10.1515/euco-2017-0034 (2017).

    Article 

    Google Scholar
     

  • Syphard, A. D., Brennan, T. J. & Keeley, J. E. The importance of building construction materials relative to other factors affecting structure survival during wildfire. Int. J. Disaster Risk Reduct. 21, 140–147. https://doi.org/10.1016/j.ijdrr.2016.11.011 (2017).

    Article 

    Google Scholar
     

  • Syphard, A. D. & Keeley, J. E. Factors associated with structure loss in the 2013–2018 California wildfires. Fire 2, 49. https://doi.org/10.3390/fire2030049 (2019).

    Article 

    Google Scholar
     

  • Caballero, D. & Beltran, I. International Workshop Forest Fires in the Wildland-Urban Interface and Rural Areas in Europe (Athens, Greece, 2003).

  • Sande Silva, J., Regio, F., Fernandes, P. M. & Rigolot, E. Towards Integrated Fire Management—Outcomes of the European Project Fire Paradox (European Forest Institute, 2010).


    Google Scholar
     

  • Mhawej, M., Faour, G. & Adjizian-Gerard, J. Establishing the Wildland-Urban Interface building risk index (WUIBRI): The case study of Beit-Meri. Urban For. Urban Green. 24, 175–183. https://doi.org/10.1016/j.ufug.2017.04.005 (2017).

    Article 

    Google Scholar
     

  • Oliveira, S. et al. Mapping wildfire vulnerability in the Mediterranean Europe. Testing a stepwise approach for operational purposes. J. Environ. Manage. 206, 158–169. https://doi.org/10.1016/j.jenvman.2017.10.003 (2018).

    Article 

    Google Scholar
     

  • Ghorbanzadeh, O., Blaschke, T., Gholamnia, K. & Aryal, J. Forest fire susceptibility and risk mapping using social/infrastructural vulnerability and environmental variables. Fire 2, 50. https://doi.org/10.3390/fire2030050 (2019).

    Article 

    Google Scholar
     

  • Ganteaume, A. & Jappiot, M. Assessing the fire risk in the wildland-urban interfaces of SE France: focus on the environment of the housing. In Advances in Forest Fire Research (ed. Viegas, D. X.) 648–656 (Imprensa da Universidade de Coimbra, 2014).


    Google Scholar
     

  • Penman, T. D. et al. Reducing the risk of house loss due to wildfires. Environ. Model. Softw. 67, 12–25. https://doi.org/10.1016/j.envsoft.2014.12.020 (2015).

    Article 

    Google Scholar
     

  • Papakosta, P., Xanthopoulos, G. & Straub, D. Probabilistic prediction of wildfire economic losses to housing in Cyprus using Bayesian network analysis. Int. J. Wildl. Fire 26, 10–23. https://doi.org/10.1071/WF15113 (2017).

    Article 

    Google Scholar
     

  • Andersen, L. M. & Sugg, M. M. Geographic multi-criteria evaluation and validation: A case study of wildfire vulnerability in Western North Carolina, USA following the 2016 wildfires. Int. J. Disaster Risk Reduct. 39, 101123. https://doi.org/10.1016/j.ijdrr.2019.101123 (2019).

    Article 

    Google Scholar
     

  • CMINE Task Group Wildfire. Wildfire Management in Europe: Final Report and Recommendation Paper (CMINE Task Group Wildfire, 2020).


    Google Scholar
     

  • Kontogiannis, T. & Malakis, S. A polycentric control analysis of emergency responses: An application to a wildfire case. Saf. Sci. 128, 104776. https://doi.org/10.1016/j.ssci.2020.104776 (2020).

    Article 

    Google Scholar
     

  • Efthimiou, N., Psomiadis, E. & Panagos, P. Fire severity and soil erosion susceptibility mapping using multi-temporal earth observation data: The case of Mati fatal wildfire in Eastern Attica, Greece. CATENA 187, 104320. https://doi.org/10.1016/j.catena.2019.104320 (2020).

    Article 

    Google Scholar
     

  • Papalou, A. & Baros, D. K. Assessing structural damage after a severe wildfire: A case study. Buildings 9, 171. https://doi.org/10.3390/buildings9070171 (2019).

    Article 

    Google Scholar
     

  • Cohen, J. The wildland-urban-interface fire problem. For. Hist. Today 20, 26 (2008).


    Google Scholar
     

  • Penman, T. D., Collins, L., Syphard, D., Keely, J. E. & Bradstock, R. A. Influence of fuels, weather and the built environment on the exposure of property to wildfire. PLoS ONE 9, e111414. https://doi.org/10.1371/journal.pone.0111414 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Hakes, R. S. P., Caton, S. E., Gollner, M. J. & Gorham, D. J. A review of pathways for building fire spread in the Wildland urban interface part II: Response of components and systems and mitigation strategies in the United States. Fire Technol. 53, 475–515. https://doi.org/10.1007/s10694-016-0601-7 (2017).

    Article 

    Google Scholar
     

  • Gibbons, P. et al. Land management practices associated with house loss in wildfires. PLoS ONE 7, e29212. https://doi.org/10.1371/journal.pone.0029212 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Opie, K., March, A., Leonard, J. & Newnham, G. Indicators of Fire Vulnerability: Risk Factors in Victorian Settlement (University of Melbourne, 2014).


    Google Scholar
     

  • Gibbons, P. et al. Options for reducing house-losses during wildfires without clearing trees and shrubs. Landsc. Urban Plan. 174, 10–17. https://doi.org/10.1016/j.landurbplan.2018.02.010 (2018).

    Article 

    Google Scholar
     

  • Penman, T. D. et al. Retrofitting for wildfire resilience: What is the cost? Int. J. Disaster Risk Reduct. 21, 1–10. https://doi.org/10.1016/j.ijdrr.2016.10.020 (2017).

    Article 

    Google Scholar
     

  • Fox, D. M. et al. How wildfire risk is related to urban planning and Fire Weather Index in SE France (1990–2013). Sci. Total Environ. 621, 120–129. https://doi.org/10.1016/j.scitotenv.2017.11.174 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Copernicus Emergency Management Service. EMSR300, Forest fires in Attica (Greece). ((@2021 European Union)).

  • Kursa, M. & Rudnicki, W. Feature selection with the Boruta package. J. Stat. Softw. 36, 1–13. https://doi.org/10.18637/jss.v036.i11 (2010).

    Article 

    Google Scholar
     

  • Lekkas, E., Carydis, P., Lagouvardos, K., Mavroulis, S. & Diakakis, M. The July 2018 Attica (Central Greece) wildfires. Newslett. Environ. Disaster Crises Manage. Strateg. https://doi.org/10.13140/RG.2.2.15202.96966 (2018).

    Article 

    Google Scholar
     

  • Vacca, P., Caballero, D., Pastor, E. & Planas, E. WUI fire risk mitigation in Europe: A performance-based design approach at home-owner level. J. Saf. Sci. Resilien. 1, 97–105. https://doi.org/10.1016/j.jnlssr.2020.08.001 (2020).

    Article 

    Google Scholar
     

  • Blanchi, R., Leonard, J. E. & Leicester, R. H. Lessons learnt from post bushfire surveys at the urban interface in Australia. For. Ecol. Manage. 234S, S139. https://doi.org/10.1016/j.foreco.2006.08.184 (2006).

    Article 

    Google Scholar
     

  • Leonard, J. et al. Building and Land-Use Planning Research After the 7th February 2009 Victorian Bushfires—Preliminary Findings (CSIRO Sustainable Ecosystems, Bushfire CRC and Geoscience Australia, 2009).


    Google Scholar
     

  • Cova, T. J., Drews, F. A., Siebeneck, L. K. & Musters, A. Protective actions in wildfires: Evacuate or shelter in place? Nat. Hazard Rev. 10, 151–162. https://doi.org/10.1061/(ASCE)1527-6988(2009)10:4(151) (2009).

    Article 

    Google Scholar
     

  • McCaffrey, S., Rhodes, A. & Stidham, M. Wildfire evacuation and its alternatives: Perspectives from four United States communities. Int. J. Wildl. Fire 24, 170–178. https://doi.org/10.1071/WF13050 (2015).

    Article 

    Google Scholar
     

  • UNISDR. UNISDR Terminology on Disaster Risk Reduction (UNISDR, 2009).


    Google Scholar
     

  • Ramsay, G. C., McArthur, N. A. & Dowling, V. P. Building in a fire-prone environment: Research on building survival in two major bushfires. Proc. Linnean Soc. NSW 116, 133–140 (1996).


    Google Scholar
     

  • Xanthopoulos, G., Bushey, C., Arnol, C. & Caballero, D. Proc. 1st International Conference in Safety and Crisis Management in Costruction, Tourism and SME Sectors, 702–734 (Nicosia, Cyprus, 2011).

  • Federal Emergency Management Agency (FEMA). Home Builder’s Guide to Construction in Wildfire Zones (Federal Emergency Management Agency, 2008).


    Google Scholar
     

  • Quarles, S. L. et al. Lessons Learned from Waldo Canyon Fire Adapted Communities Mitigation Assessment Team Findings (Insurance Institute for Business & Home Safety, 2013).


    Google Scholar
     

  • Institute for Business and Home Safety (IBHS). Wildfire Home Assessment and Checklist. What to Know and What You Can Do to Prepare (Institute for Business and Home Safety, 2017).


    Google Scholar
     

  • Cohen, J. D. Examination of the Home Destruction in Los Alamos Associated with the Cerro Grande Fire July 10, 2000 (United States Department of Agriculture (USDA) Forest Service, 2000).


    Google Scholar
     

  • Leonard, J. E. & Bodwitch, P. A. Findings of studies of houses damaged by bushfire in Australia (Commonwealth Scientific and Industrial Reserach Organisation (CSIRO), Manufacturing and Infrastructure Technology, 2003).


    Google Scholar
     

  • Mitchell, J. W. & Patashnik, O. Firebrand Protection as the Key Design Element for Structural Survival During Catastrophic Wildfire Fires (2007).

  • FEMA. Guidelines for Design of Structures for Vertical Evacuation from Tsunamis (FEMA, 2008).


    Google Scholar
     

  • Foote, E. I. D., Martin, R. & Gilless, J. K. The defensibe space factory study: A survey instrument for postfire structure loss. In Proc. 11th Conference on Fire and Forest Meteorology, Montana, USA 91-04, 66–73 (1991).



  • Source link

    Leave a Comment

    Your email address will not be published.